Apparently I'm not exactly doing this the optimal way... because 7 x 10 in 1/3 steps is, er, ENOMEMORY. Fantastic.
5 x 8 sticks in half integer steps is best with 4 sticks cut into 2/3 and 4 uncut assembled into 4 lots of 3/5 and 1 of 2/2/2/2 which gives more than 3 stick-parts.
With m and n <= 10 and m<n in half integer steps 12 combinations have a smallest-stick-fragment larger than gcd(m,n); 4 of which are non-integer (5 x7 is the smallest).
I have no idea how to prove whether any given answer could be bested by taking smaller steps other than by trying progressively smaller steps and seeing.
5 x 8 sticks in half integer steps is best with 4 sticks cut into 2/3 and 4 uncut assembled into 4 lots of 3/5 and 1 of 2/2/2/2 which gives more than 3 stick-parts.
Borrowing writinghawk's proof technique: in a better solution, each of the five 8-sticks would have to be cut into at most three pieces (if you cut one in four then a piece must be <=2), which gives 15 pieces overall, and so at least one of the eight 5-sticks must end up as a single piece (15 isn't enough pieces for two each). The 8-stick including that whole 5-stick then has 3 units of length left over; if you divide that in two then you have a piece <=1.5 (no good) and OTOH if you leave it whole then that leaves 2 units on the 5-stick you cut it off.
So this dissection for 5 into 8 cannot be beaten even if you were to increase the denominator, and hence gerald_duck's question is indeed answered.
(I do wonder how far that proof technique can be automated. It might give rise to a better search algorithm!)
5 x 8 sticks in half integer steps is best with 4 sticks cut into 2/3 and 4 uncut assembled into 4 lots of 3/5 and 1 of 2/2/2/2 which gives more than 3 stick-parts.
With m and n <= 10 and m<n in half integer steps 12 combinations have a smallest-stick-fragment larger than gcd(m,n); 4 of which are non-integer (5 x7 is the smallest). I have no idea how to prove whether any given answer could be bested by taking smaller steps other than by trying progressively smaller steps and seeing.
Borrowing
So this dissection for 5 into 8 cannot be beaten even if you were to increase the denominator, and hence
(I do wonder how far that proof technique can be automated. It might give rise to a better search algorithm!)