(Reply) [entries|reading|network|archive]
simont

[ userinfo | dreamwidth userinfo ]
[ archive | journal archive ]

[personal profile] simont Fri 2014-02-21 13:46
Indeed, you certainly can't get a longer smallest stick by small perturbations of that answer, because one of the 5-sticks is entirely made up of smallest-fragments and so if you lengthen them all by any ε > 0 then that stick overflows. What I was hoping to show was that the converse is also true – that the only way in which a dissection can be locally optimal is if some stick is made up entirely of smallest-fragments, by showing that in all other cases you can find a system of ε-adjustments that lengthens every smallest-fragment. No luck yet, though!

(In fact, [livejournal.com profile] writinghawk has proved over on LJ that my dissection for 5-into-7 is globally as well as locally optimal, which is more than I had previously known.)

I've written a thing that looks for integer solutions

Ooh, I'd like to see whatever data it's generated.

Also it can't handle irrationals and so far can do fractions only where all stick-fragments share a denominator

In any rational dissection there must be some denominator shared by all fragments (just take the lcm of all denominators), so the latter isn't a problem. And I'm still convinced that irrationals can't appear in any solution unless there's an equally good or better one without them (I have a half-thought-out proof idea involving treating R as a vector space over Q), so I'm not worried about the former either.
Link Read Comments
Reply:
From:
Anonymous( )Anonymous This account has disabled anonymous posting.
OpenID( )OpenID You can comment on this post while signed in with an account from many other sites, once you have confirmed your email address. Sign in using OpenID.
User
Account name:
Password:
If you don't have an account you can create one now.
Subject:
HTML doesn't work in the subject.

Message:

 
Notice: This account is set to log the IP addresses of everyone who comments.
Links will be displayed as unclickable URLs to help prevent spam.