(Reply) [entries|reading|network|archive]
simont

[ userinfo | dreamwidth userinfo ]
[ archive | journal archive ]

[identity profile] writinghawk.livejournal.com Wed 2014-03-12 12:25
Actually I spoke too soon. The method works fine for s(4,5) and also for s(3,7). However, for s(7,8) it gives a bound of s=8/3. This is certainly a bound, but it's not achievable: however, it's not necessary to drop down to 7/3, since the intermediate value of 5/2 is achievable (again, with a quite easy but fiddly proof).

So I must make a more modest claim: the method gives a reliable bound b, which is usually achievable. When it isn't achievable, m/3 may be the best achievable, but there may be some other intermediate value that will work.

As you can see, I've simply relaxed one of the two claims I made without any good reason. I'm still making one claim without proof (that m/3 is always achievable, because there is so much floppiness in the dissection).

For s(4,9) my method gives a bound of s<=9/5, which is another clearly not achievable case, so my new weakened claim is that 4/3 <= s < 9/5. As I haven't found the value yet this is an interesting test case ...
Link Read Comments
Reply:
From:
Anonymous( )Anonymous This account has disabled anonymous posting.
OpenID( )OpenID You can comment on this post while signed in with an account from many other sites, once you have confirmed your email address. Sign in using OpenID.
User
Account name:
Password:
If you don't have an account you can create one now.
Subject:
HTML doesn't work in the subject.

Message:

 
Notice: This account is set to log the IP addresses of everyone who comments.
Links will be displayed as unclickable URLs to help prevent spam.